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Abstract-Simultaneous heat and mass transfer with phase change in a porous slab has been analytically 
investigated. Two spatially-steady regimes, corresponding to immobile and mobile condensate, are 
discovered. Closed-form analytical expressions for the temperature, vapor concentration, condensation rate 
and liquid-content distributions as well as the location of the condensation region for each of the two regimes 

is obtained. 

INTRODUCTION 

SIMULTANEOUS transport of heat and mass with phase 
change is of practical importance in applications such 
as the design of energy efficient buildings. With 
improvements in the control of air-infiltration and 
increasing levels of thermal insulation, the transport of 
vapor across the building shell and its possible 
condensation in the insulation increases the thermal 
conductivity of the building envelope and may cause 
structural damage. 

The diverse aspects of simultaneous heat and mass 
transfer have been the subject of considerable 
analytical and experimental studies [ 141. However, 
most of the analyses on condensation of vapor in 
open-pore insulations [S-7] neglect the coupling 
between heat and vapor transfer in the region where 
condensation occurs, as well as the effects of 
condensate motion. One of the more complete 
analyses is due to Ogniewicz and Tien [8], in which 
the convective contributions as well as the coupling 
between heat and vapor transport are taken into 
account. This analysis does not consider diffusion of 
the condensate and is, therefore, restricted to the time 
period over which the condensate is in a pendular 
state. Furthermore, as the resulting equations are 
solved numerically, the findings are not general. 

In this paper, the phenomenon of one-dimensional 
simultaneous heat and mass transport with phase 
change in a porous slab is considered. Closed-form 
approximate solutions for the temperature, vapor 
concentration and liquid-content profiles for the cases 
of immobile and mobile condensate are obtained. 

PROBLEM STATEMENT 

We consider one-dimensional diffusion of heat, 
vapor and liquid in a porous slab of thickness L,, Fig. 
1. The temperature and vapor concentration 
boundary conditions are (T,,, C,) and (T,, C,), 
respectively. With Th and C,, larger than T, and C,, heat 
and vapor diffuse towards the colder boundary. For a 

x-0 L, -Lo 

FIG. 1. Schematic of profiles of temperature and 
concentration in the porous slab. 

constant pressure system, the concentration of vapor 
at isothermal equilibrium with liquid, C*, is a unique 
function of temperature.? Therefore, the vapor 
saturation-concentration profile in the medium is 
defined by the temperature distribution. Depending 
on the values of the prescribed concentration 
conditions at the boundaries, the vapor concentration 
profile may touch the saturation concentration profile 
in the slab. The diffusing vapor would, then, undergo 
phase change and condense in some region of the slab. 
In this paper we treat the situation where the 
boundary conditions allow this to occur. 

At the limit where the vapor concentration at the 
two boundaries are at the saturation level, 
condensation occurs over the entire width of the slab. 
With the vapor concentration at the boundaries less 
than the saturation values, condensation occurs over 
some region in the slab, the wet zone, separated from 
the boundaries by two dry zones as illustrated in 
Fig. 1. 

t It is assumed that the pore size is such that interfacial 
curvature has a negligible effect on pressure. 
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L 

vapor concentration 
saturation vapor concentration 
specific heat 
diffusivity of liquid and vapor, 
respectively 
mean liquid diffusivity 
Fourier number based on liquid 
diffusivity, D,, t/L2 
Fourier number based on vapor 
diffusivity, D, t/L2 
latent heat of condensation 
liquid flux 
non-dimensional liquid flux, 

Jh,,IWT, - ‘4) 
thermal conductivity 
Lewis number 
location of the warm boundary of the 
condensation region 
location of the cold boundary of the 
condensation region 
total length of the slab 
ratio of vapor diffusivity to liquid 
diffusivity 
reference temperature, (G + Q/2 
reference temperature, (To + Ti)/2 
heat flux per unit area 
non-dimensional heat flux, 

q&/WI - ‘f,) 
velocity of the condensate 

Greek symbols 

; 

thermal diffusivity 
non-dimensional temperature drop, 

Vh - U/7; 
P’ non-dimensional temperature drop, 

(T,- q)/r, 
‘r hr,l(R r,) 
6 void fraction of the porous slab 

? dimensionless temperature 
0 liquid content 

@c critical liquid content 

: 
liquid diffusivity 
latent heat transport coefficient 

P density of air 

PC density of condensate 
I- condensation rate per unit volume 
R’ Kossovitch number 
n Kossovitch number, h~~C~~~&~ K. 

Subscripts 
C cold 
h hot 

:! 
gas 
liquid 

S steady state 
t transient 

;; 
vapor 
variable associated with L, 

1 variable associated with I,, . 

boundary condition variable, equation Superscripts _ 
(30) non-dimensionali~d variable 
length-scale in condensation region ’ parameter evaluated in reference to 
length-scale in the slab. the condensation region. 

The condensation of vapor in the wet zone can be 
considered to be simuItaneously a vapor sink, liquid 
source and heat source. Hence, the three processes of 
vapor diffusion, condensate motion and heat transfer 
are coupled through the condensation rate. The 
location of the condensation region as well as the 
vapor concentration, liquid-content and temperature 
profiles in the medium are obtained by the 
simultaneous solution of the three coupled 
conservation equations for vapor, liquid and heat. The 
solution to this set of equations with the prescribed 
slab boundary conditions is obtained by partitioning 
the medium into three regions of dry-wet-dry. The 
conservation equations are solved in each region. By 
applying continuity of temperature and vapor 
concentration together with energy and mass 
conservation at the wet-dry boundaries, the 
temperature and concentration profiles in the three 
regions are matched. 

Transport equations 

In this study one-dimensional diffusive transfer of 

heat, vapor and liquid is considered. According to 
Fourier and Fick’s laws, heat and vapor fluxes are 
given as: 

q= -KdT/dz (1) 

j, = -D, dC/dz. (2) 

Presently, attention is focused on porous media with 
large pores, and thus K and D, are taken to be spatially 
uniform and equal to the properties of the gas 
occupying the pores. 

In unsaturated porous media where surface tension 
forces dominate gravitational effects, liquid flux, 
neglecting the temperature dependence of surface 
tension of the liquid, is [9]: 

j, = p,GD,(B) d0/dz (3) 

where 0 denotes liquid content and is defined as the 
fraction of the pore space occupied by liquid. D,(O) is a 
phenomenologically defined liquid diffusivity whose 
dependence on liquid content is a complicated 
function of the internal geometry and structure of the 
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medium. In general, liquid diffusion may be modelled 
to consist of two regimes. At liquid contents less than 
the critical liquid content (CLC), liquid is in a 
pendular state and does not exhibit any tendency to 
diffuse. Beyond the CLC, as the pendular drops 
coalesce and the capillary pores are wetted, liquid is 
propelled by surface tension forces from regions of 
higher liquid content to the drier regions. Although 
liquid diffusivity in the second regime is a function of 8, 
for mathematical simplicity a mean value of liquid 
diffusivity, D,,, is used in the problem formulation. 
Thus, liquid diffusivity is modelled separately for each 
of the two regimes as: 

(1) Immobile condensate 

6 < 0, DL(e) = 0.t 

(2) Mobile condensate 

e > ec D,(e)= D,,. 

Conservation equations and model 
In the absence of any convective contributions [9], 

the conservation equations for heat, vapor and liquid 
may be written as: 

(4) 

P& D,(B); +r=p,6$ [ 1 
6) 

subject to the boundary conditions: 

at z=O T=T,, C=C, 

at z=L, T=T,, c=c,. 

In the wet zone the conservation equations are 
coupled through the condensation rate term, I, 
whereas in the dry zone I = 0 and l3 = 0. Beyond the 
initial transient (at/L: b 1, D,t/L: $ l), the 
temperature and vapor concentration profiles remain 
invariant with time, vapor condenses continuously in 
the medium, the condensate accumulates with time, 
and for liquid contents less that CLC remains 
immobile. (In this work any condensation that occurs 
during the initial transient is neglected.) Therefore, 
equation (6) simplifies to 

ae I-(~) 

at- pcti 
e < e, (7) 

and we define the solution which satisfies the above 
conditions as the first spatially-steady regime. During 
this regime the temperature and concentration profiles 
are at steady state, there is no condensate motion, the 

t This condition is more restrictive than is required. A less 
conservative condition on liquid diffusivity necessary for 
neglecting condensate diffusion is obtained in ref. [9]. 

liquid content in the wet zone increases linearly with 
time, and the location of the condensation region is 
spatially fixed and determined by the continuity of 
heat and vapor fluxes at the wetdry boundaries. After 
a time scale of order (f?,p,?i/I) the local values of 0 
reach CLC, and liquid diffusion leads to the migration 
of the condensate into the dry regions and the 
subsequent expansion of the condensation region. 
Eventually, after a time period of order [(L+/D,,) 
+ (f3,pc6/r)] a new steady state is established, 
allowing equation (6) to be simplified to 

d28 r(z) -= -___ 
dz2 PC%, 

e> ec. (8) 

This regime is defined as the second spatially-steady 
regime. Now, the vapor that condenses in the wet zone 
diffuses towards the wet zone’s boundaries as liquid 
and re-evaporates at these boundaries leaving the 
liquid-content profile invariant with time. The heat 
and vapor flux conservation conditions at the wet 
zone’s boundaries, that determine the location and 
boundary temperature of the condensation region, 
account for the discontinuities of heat and vapor flux 
associated with phase change at those boundaries. 

In light of the non-uniform liquid content 
distribution in the first regime [see equation (22)], the 
analysis of the unsteady regime that separates the two 
steady regimes can be only achieved numerically, and 
is not undertaken in this study. 

SOLUTIONS 

As the effects of condensate motion on the 
temperature distribution in the slab can be neglected 
[9], the second spatially-steady regime lends itself to 
similar analytical treatment as the first. Equations (4) 
and (5) govern both spatially-steady regimes with the 
right-hand terms set to zero. The differences between 
the first and second regimes is in the simplification of 
equation (6) to either (7) or (8) as well as in the 
matching conditions at the wet-dry interfaces. We 
begin, therefore, by obtaining a general solution for 
the wet zone profiles. 

Condensation region profiles 
Referring to Fig. 1, we consider a wet zone of some 

thickness L, -Lo, boundary temperatures To and Tl, 
and corresponding boundary concentrations Cg(T,) 
and C:(T,). The vapor and energy continuity 
equations are coupled through the condensation rate 
term. By eliminating this term equations (4) and (5) are 
reduced, for steady state, to 

Condensation occurs throughout the width of the 
region and, hence, the vapor concentration is a unique 
function of the temperature distribution. Therefore, 
equation (9) is a differential equation in terms of 
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temperature only. The functional dependence of 
saturation concentration on temperature is obtained 
by invoking the Clausius-Clapeyron relationship. By 
approximating the vapor as a perfect gas and 
recognizing that ur + v,, the Clausius-Clapeyron 
equation may be well approximated by 

dC* h,C* 
dTz=. (10) 

Equation (10) is integrated from C:’ corresponding to 
the vapor concentration at the mean temperature of 
the wet zone, T,’ = (7” + T,)/2, to C* at T: 

5 = exp[&( I-F)]. (llf 

By non-dimensionalizin~ temperature in the 
condensation region as : 

q’= u--T,‘MT,-T,) 02) 

equation (11) is succinctly written as: 

C*/C:’ = exp(@) (13) 
where 

V'g'$ 
0=---Y-- 

1 -tp’$ 

d = hQ/(RTr’) and p’ = AT’/T,‘. 

Introducing equations (11) and (13) into the energy 
equation, (9) and non-dimensionalizing the length 
scale in the condensation region as X = x/(L1 -&J, 
the following second-order non-linear differential 
equation for reduced temperature is obtained : 

Le (Lewis number) = a/D, 

R’ (Kossovitch number) = (h,C:‘/pc, 7’:). 
51 

Equation (15) is subject to the following boundary 
conditions: 

where 

vy’ = l/2 at.?=0 

Q’ = -l/2 at X = 1 
(16) 

and may be solved numerically. However, an 
approximate analytical solution is obtained by 
Iineari~ng it around a zeroth-order linear tempe~ture 
profile 

$ =0.5-X+&(X) (17) 

where E(X) is a temperature perturbation satisfying 

E2 << 1, E(% = 0) = &(% = 1) = 0. (18) 

Introducing equation (17) into (1.5) and neglecting 
terms of order Ed, the following second-order linear 

differential equation in E is obtained: 

(19) 
Solving the above in conjunction with boundary 
conditions (18) and introducing the result into 
equation (17) yields: 

‘?t = 0.5 

I 

1 _.f _exp(i’2) - 1. 
exp(L’) - 1 I 

(20) 

where 

1’ _ 2r’2B’n’ 
Le + df2’ 

The above is an approximate but general solution for 
q’(x). It indicates that the temperature profile in the 
wet zone is a function of one parameter only, A’, which 
is the ratio of heat released by condensation to heat 
conducted across the wet zone in absence of 
condensation and is, therefore, called the latent heat 
transport coefilcient [9]. The reduced temperature 
q’(x) is plotted for various values of 1’ in Fig. 2. The 
accuracy of the perturbation solution is established by 
comparing it with the numerical solution of equation 
(15) for two R’ values of 2.04 and 4.12 (corresponding 
to temperature drops of 20°C and 4O”C, respectively; 
see Figs. 3 and 4). The results indicate that as the value 
of J.’ is increased the analytical solution diverges from 
the numerical result due to the increased effect of terms 
of order e2 and higher powers. As the range of values 
for ,l’ corresponding to condensation of vapor in 
insulated structures does not exceed 6, equation (20) is 
a good analytical approximation to the temperature 
profile in the condensation region. 

The condensation rate per unit volume in non- 
dimensional form can be obtained from equations (4) 

-0.5 
0 0.2 0.4 06 06 I.0 

#T 

FIG. 2. Reduced temperature profile for different values of A’. 
The case of no condensation is characterized by I’ = 0. 
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-0.1 a Perturbation 
solution 

-0.2 

-0.3 

-0.4 

-0.5 l_-_J!l 
0 0.2 0.4 0.6 0.6 1.0 

x’ 

FIG. 3. Comparison of the analytical solution with the 
numerical results of the reduced temperature profile, 

i’ = 2.04. 

and (20): 

r Le/Y Z2 exp(l’x) 

= R’ 2 exp(l’)-1 
(21) 

indicating an exponential dependence of r on X, Fig. 5. 
Furthermore, the condensation rate exhibits a strong 
dependence on the temperature drop across the zone: 
fN12(F2 w /Y3. Thus, a doubling oftemperature drop 
results in an eight fold increase in the volumetric 
condensation rate. 

n .O 2297 

-0.2- 

-0.3- 

-0.4- 

FIG. 4. Comparison of the analytical solution with the 
numerical results of the reduced temperature profile, 

rl’ = 4.12. 

J.O- 

4.0- 

3.0- 

: .! 
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4” t’ 
& 2.0- 

IL 

I.O- 

S-l’. 0.23 

K 

FIG. 5. Non-dimensional condensation rate and liquid- 
content profile for two different boundary conditions. 

FIRST SPATIALLY-STEADY SOLUTION 

During the first spatially-steady regime the liquid- 
content distribution in the wet zone is obtained by 
integration of equation (6) : 

@(_pFo,) = 
exp(i’x) 

pcd R’ 2 exp(Z)- 1 1 Fov (22) 
where Fo, is the Fourier number based on vapor 

diffusivity, D,t/(L, -L,)‘. The liquid-content dis- 
tribution increases linearly with time and follows the 
same profile as condensation rate. An example is 
shown in Fig. 5, except for a change of the label on the 
vertical axis r to pcde/Cf’Fov. 

Matching of zones 
The analytical expressions for the temperature and 

liquid-content profiles in the condensation region 
depend on the width and temperature boundary 
conditions of the wet zone. These parameters are not 
known a priori and are obtained by matching the 
temperature and vapor concentration profiles in the 
condensation region with those of the adjacent dry 
regions. Once these parameters are identified the 
analytical results of the previous section may be 
resealed to reflect their parametric dependence on the 
slab’s boundary conditions and width. 

In the dry regions, the vapor concentration and 
temperature profiles vary linearly with position. 
Assuming uniform thermal conductivity and vapor 
diffusivity throughout the slab, continuity of heat and 
vapor flux across the boundaries of the condensation 
region is equivalent to equality of concentration and 
temperature gradients at the boundaries: 

T,-TO dT’ 

-= -dz* Lo 
z=L, (23) 
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c, -C; dC* ---_=-_ z=L 
L0 dz ’ cl (24) 

T,-T, dT’ ----= -_ 
Lr-L, dz ’ 

z= L, (25) 

Cf -Cc dC* ___ = -__ 
Lr-L, dz ’ 

z=L,. (26) 

Four unknowns are associated with the four equations 
(23)-(26). These are: To, T,, L, and L,. 

Before proceeding with the solution of the four 
equations let a new set of non-dimensional variables 
and parameters be defined. These are conjugate to the 
previously defined variables and are referred to the 
slab boundary conditions and width: 

r?= 
T - [GS + U/21 

T--T, 
z = ZJL,. 

(27) 

(28) 

The new non-dimensional temperature satisfies the 
boundary conditions: 

q = 0.5 atZ=O 

4 = -0.5 at Z= 1. 

The unprimed conjugates of p’ and R’ are defined in 
the Nomenclature. 

The values of temperature at the boundaries of the 
wet zone q,, and r~r are obtained by eliminating the 
length scales between the heat and vapor continuity 
equations (23)-(26). By invoking the Clausius- 
Clapeyron relation and making the simplifying 
approximation of (1 +q/?) = 1, one equation in the 
form of 

l -hh,c exp(uh,c) + uh.c = o 

is obtained where 

uh = Y,%!h -%,I ’ o 

A plot of equation (30) is given in Fig. 6. For a given 
value of humidity, h, equation (30) has two u roots: 
one positive and one negative. The positive root, ah, 
corresponds to boundary conditions on the hot side of 
the slab and is associated with hh and q,,. The negative 
root, uc, corresponds to the cold-side boundary 
conditions and is associated with h, and qr. When the 
cold-side humidity, h,, is put into equation (30), the 
negative root and when hh is used the positive root 
must be used. Therefore, q. and q1 are now defined, 
through equation (30), as a function of the slab 
boundary conditions, and the primed parameters 
which define the analytical solutions of the wet zone 
can be readily calculated. 

The two length scales L, and L, are obtained by the 
simultaneous solution of any two of the four boundary 

I./ 

FIG. 6. Plot of boundary condition parameter vs humidity. 

equations (23H26): 

L, = l-l2 I-p&n,+(p& ( . 
where 

-(pJm] 

n1 = -&&+1) 
l-l, = -i($g+l). 

J 

(32) 

(33) 

(34) 

(35) 

With the identification of the location of the 
condensation region the first spatially-steady regime is 
completely defined. The temperature, vapor 
concentration, liquid content distributions, as well as 
the condensation rate per unit volume and the 
location of the condensation region are obtained in 
closed form. 

The approximate analytical results are compared, 
for a representative set of boundary conditions and 
medium properties, with the numerical solutions in 
Fig. 7. The numerical solution of the energy equation, 
is obtained by the spatial discretization of equation 
(15) and successive iteration, and the location of the 
condensation region is obtained by numerical solution 
of equations (23)-(26). The agreement for both the 
temperature profile and the location of the 
condensation region is very good. 

SECOND SPATIALLY-STEADY REGIME 

The second spatially-steady regime is defined as the 
regime where the condensate is mobile and the liquid 
content in the condensation region has reached a 
steady profile. The energy equation for this regime is 
identical to that of the first regime, and thus the non- 
dimensional temperature profile in the wet zone, 
equation (20) and volumetric condensation rate, 
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0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.6 0.9 1.0 

FIG. 7. Comparison of the analytical solution with the numerical results of the non-dimensional 
temperature profile in the slab during the first steady regime. 

equation (21) of the first steady regime are equally Comparison of the above two equations indicates that 
valid in the second regime. At steady state liquid .I1 increases much more rapidly than 7, with 
continuity for this regime is given by: increasing 1’. 

(36) Matching of zones 

and as liquid diffusion is assumed to be zero for 8 < 0,, 
equation (36) is associated with the following 
boundary conditions: 

z=o e=e c 

x=1 e=e C. 

(37) 

Integrating equation (36) and using results of the first 
regime for r(X), the liquid-content distribution is 
obtained as : 

C:Lep 1 _ 
e,(x)= e,+w--,, z 

[( 

expA’x-1 
x- 

exp1’-1 I (38) 

where M is the ratio of vapor diffusivity to liquid 
diffusivity. Liquid-content distribution for several 
values of the latent heat transport coefftcient is given in 
Fig. 8, indicating a strong dependence on 1’. As the 
condensation rate, r, increases with X, Fig. 5, the 
liquid-content profiles vary steeply at the colder edge 
of the condensation region and therefore, the point of 
maximum liquid content, lies closer to the colder 
boundary. 

During this regime the liquid efllux into the 
boundaries of the wet zone is equal to condensation 
rate per unit area of the wet zone. Liquid elfluxes at 
X = 0 and X = 1, J,, and J1, respectively, are 
proportional to the gradient of liquid content at those 
locations, and are calculated to be: 

J 
0 

_ Lej? exp(X--1)-l 

R’ 2(expI’-1) 
(39) 

Lefl (i’-l)expI’+l 
J; =- 

R’ f(exp I’ - 1) ’ w 

As in the first steady regime, the vapor 
concentration and temperature distributions in the 
dry regions are linear. The continuity of heat flux and 
mass conservation at the two wet-dry interfaces result 
in four equations which are solved to generate the 
values of the four unknowns T,, T,, L, and Lt. 

The heat supplied from the warmer side of the slab 

0.3 

I 

FIG. 8. Normalized steady state liquid-content profiles 
during the second steady regime. 
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to the condensation region is equal to the heat flux 
conducted into the wet zone plus the heat flux required 
to evaporate the liquid flux J, 

T-To -k----c 

LO 
-k~+J,h,,, z= Lo. (41) 

On the other hand, the vapor flux entering the wet 
zone at z = L, is equal to the sum of the vapor flux 
entering the slab at z = 0 plus the vapor flux generated 
by the evaporation of the liquid flux J,. 

C,-C,* dC* 
-Dv L 

p= ----J,, z=L,. (42) 
0 dz 

By similar arguments the following heat and vapor- 
flux balances at the z = L, boundary of the wet zone 
are obtained: 

T-T, -k- 
b--L, 

+J,h, = -k$ z = L, (43) 

and 

D 
C:-C, 
-= 

“L,-L, 
-D,g+J,, z=L,. WI 

Under steady-state conditions, the condensed vapor 
migrates towards the boundaries of the condensation 
region and evaporates. Hence, as there is no net 
accumulation of condensate, the vapor flux entering 
the slab equals the vapor flux leaving it: 

(45) 

By the same token, with no net mass change in the 
porous slab, there is no associated change in the 
internal energy of the wet zone. Therefore, the heat 
flux entering the slab is equal to the heat flux 
leaving it: 

k 
Th - r, TI -T, -= k- 

Lo L,--L, 
(46) 

By substituting equations (39) and (40) for liquid 
fluxes Jo and J1,, equations (41) and (43) are 
reduced to: 

qh -?O ‘I1 -?c 

L, 

=-= 1. 

l-L., 
(47) 

The above indicates that the heat flux into and out of 
the wet zone is equal to the heat flux through the slab 
with no condensation present (qh-t], = 1). The 
invariance of heat flux across the slab to condensation 
of vapor is due to the evaporation of the condensate at 
the wet zone boundaries which counterbalances the 
effects of heat released by condensation in the wet 
zone. 

Two equations relating the temperatures at the wet 
wne boundaries, q. and ql, are obtained by 
eliminating the length scales between equations (41) 
and (42), and (43) and (44), using the Clausius- 
Clapeyron relation, and the wet wne temperature 

distribution of equation (20): 

hh exp(mh)-exp(@O) 

Vh-qO 

- 

and 

=0.5$[(l+~)(I+~1~)~‘exp(*,) 

-$$-~)]. (49) 

In equation (48) 11, and in equation (49) lo appear 
implicitly in 1’ and their values are obtained by the 
simultaneous solution of the two equations by 
successive iteration. In Fig. 9 the dependence of ‘lo and 
q, on the humidity boundary conditions at a fixed set 
of boundary temperatures is investigated. With the 
slab boundaries at 100% relative humidity, 
condensation occurs throughout the region and the 
temperature at the wet wne boundaries approach the 
slab boundary values (q. --) 0.5, q1 + -0.5). At lower 
humidity values, as the size of the wet wne gets 
smaller, the temperature drop across it is reduced. 

The length scales of the second spatially-steady 
regime are obtained by the simultaneous solution of 
the two heat balance equations, equations (41) 
and (43): 

LO = bh -r],) 

AT’ 
hT+ l-(?o-rl1) 1 (50) 

and 

El = ~+(tlh-~O) I/[ AT’ 
E+I-(rlo-%) 1 (51) 

0.4 /1 @ = 0.13 

i-l = 0.53 

7 = 17.5 / 
02 h-l.0 A 

IO 

FIG. 9. Non-dimensional temperature at the boundaries of 
the wet zone vs the hot-side humidity. 
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FIG. 10. Non-dimensional temperature profile in the slab 
during the second steady regime. 

With the solution of the length scales, the second 
spatially-steady regime is now completely defined 

As an illustrative example the second spatially- 
steady regime for the parameters of Fig. 7 is 
investigated. The temperature profile as well as the 
location of the wet zone for this case is shown in 
Fig. 10. 

SUMMARY 

The temporal evolution ofcondensation in a porous 
slab consists of three regimes. During the first regime, 
where the condensate is immobile, the vapor 
concentration, temperature and location of the 
condensation region are spatially steady and the 
condensate is accumulated linearly with time. 
Assuming a negligible variation of thermal 
conductivity of the slab with increased liquid content, 
the energy released by the condensation of vapor 
reduces the magnitude of heat flux entering the slab, 
(Is, Fig. 11. As the local values of liquid content 
increase above CLC and the condensate becomes 
mobile, the concentration and temperature profiles 

0 I I I I I I 
0.4 0.5 0.6 0.7 0.6 0.9 1.0 

hh 

FIG. 11. Non-dimensional heat flux at the boundaries of the 
slab during the two regimes vs the hot-side humidity. 
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FIG. 12. Location of the condensation region during the two 
regimes vs the hot-side humidity. 

undergo a transient change, and the condensation 
region expands to accommodate the motion of 
condensate towards its boundaries, Fig. 12. This 
transition period is followed by the second spatially- 
steady regime during which the temperature, vapor 
concentration and liquid-content profiles are time- 
invariant. During this regime the effect of heat released 
by condensation is negated with the absorption of 
energy by the evaporation of the condensate effluxes at 
the wet zone boundaries and therefore, the values of 
heat flux into and out of the slab are equal to the values 
for the case of no condensation, Fig. 11. 
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TRANSFERTS SIMULTANES DE CHALEUR ET DE MASSE AVEC CHANGEMENT DE 
PHASE DANS UNE COUCHE POREUSE 

R&m&-On &die analytiquement les transferts simultanis de chaleur et de masse avec changement de 
phase dans une couche poreuse. Deux regimes spatialement stables, correspondant au condensat immobile 
et mobile, sont dicouverts. On obtient des expressions analytiques pour la temperature, la concentration 
de vapeur, le flux de condensat, la distribution de teneur en humidite, aussi bien que la location de la region 

de condensation pour chacun des deux regimes. 

GLEICHZEITIGER WARME- UND STOFFTRANSPORT MIT PHASEN-WECHSEL IN 
EINER PORGSEN PLATTE 

Zusammenfassung-Der gleichzeitige WHrme- und Stofftransport mit Phasenanderung in einer porosen 
Platte wurde analytisch untersucht. Es wurden zwei raumlich unverlnderliche Bereiche, die unbeweglichem 
und beweglichem Kondensat entsprechen, entdeckt. Analytische Ausdriicke geschlossener Form wurden 
filr die Verteilung von Temperatur, Dampfkonzentration, Kondensationsrate und Fliissigkeitsanteil und 

die Lage des Kondensationsgebiets in den beiden Bereichen ermittelt. 

B3AHMOCBII3AHHbIH TEI-IJIO-II MACCOHEPEHOC I-IPM @A30BOM IIEPEXOAE B 
I-IOPHCTOtt IIJIACTHHE 

AnmoTa~Bntnonneno amurura~ecItoe accne~osaaee asatrMocaasannoro renno-w Macconepenoca 
npn @3OBOM II~BpEiIlJeHHH B tIO&NiCTOfi ~aCTWHe. 06HapyxeHO ABK IIpOCTpaHCTBeHHO YCTOfiYUBLdX 

~KCHhfa,KOTO&%Ie COOTBeTcTByloTHeIIOABH~HOMy BIIOABHIKHOMY COCTOKHHSM KOHAeHCaTa.~OJl)"WHbI 

i%iiUlHTWIeCKEie BbIpiGKeHHK B 3BMKHj'TOM BHAe AJIR O~peAeAWIEiR IlOJIeii TeMlEpaTypbI, KOHJ.IeHTpNEiEl 

napa, CKOPOCTH Komemaumi u snaroconepmamin, a ramsce hiecrononometiria o6nacru xonnencaumi 
&%I KaKUJOI'O U3 pc3ICEiMOB. 


