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Abstract—Simultaneous heat and mass transfer with phase change in a porous slab has been analytically

investigated. Two spatially-steady regimes, corresponding to immobile and mobile condensate, are

discovered. Closed-form analytical expressions for the temperature, vapor concentration, condensation rate

and liquid-content distributions as well as the location of the condensation region for each of the two regimes
is obtained.

INTRODUCTION

SIMULTANEOUS transport of heat and mass with phase
change is of practical importance in applications such
as the design of energy efficient buildings. With
improvements in the control of air-infiltration and
increasing levels of thermal insulation, the transport of
vapor across the building shell and its possible
condensation in the insulation increases the thermal
conductivity of the building envelope and may cause
structural damage.

The diverse aspects of simultaneous heat and mass
transfer have been the subject of considerable
analytical and experimental studies [ 1-4]. However,
most of the analyses on condensation of vapor in
open-pore insulations [5-7] neglect the coupling
between heat and vapor transfer in the region where
condensation occurs, as well as the effects of
condensate motion. One of the more complete
analyses is due to Ogniewicz and Tien [8], in which
the convective contributions as well as the coupling
between heat and vapor transport are taken into
account. This analysis does not consider diffusion of
the condensate and is, therefore, restricted to the time
period over which the condensate is in a pendular
state. Furthermore, as the resulting equations are
solved numerically, the findings are not general.

In this paper, the phenomenon of one-dimensional
simultaneous heat and mass transport with phase
change in a porous slab is considered. Closed-form
approximate solutions for the temperature, vapor
concentration and liquid-content profiles for the cases
of immobile and mobile condensate are obtained.

PROBLEM STATEMENT

We consider one-dimensional diffusion of heat,
vapor and liquid in a porous slab of thickness Ly, Fig.
1. The temperature and vapor concentration
boundary conditions are (T;,C,) and (T,C),),
respectively. With T; and Cy larger than T, and C_, heat
and vapor diffuse towards the colder boundary. For a
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F1G. 1. Schematic of profiles of temperature and

concentration in the porous slab.

constant pressure system, the concentration of vapor
at isothermal equilibrium with liquid, C*, is a unique
function of temperature.t Therefore, the vapor
saturation—concentration profile in the medium is
defined by the temperature distribution. Depending
on the values of the prescribed concentration
conditions at the boundaries, the vapor concentration
profile may touch the saturation concentration profile
in the slab. The diffusing vapor would, then, undergo
phase change and condense in some region of the slab.
In this paper we treat the situation where the
boundary conditions allow this to occur.

At the limit where the vapor concentration at the
two boundaries are at the saturation level,
condensation occurs over the entire width of the slab.
With the vapor concentration at the boundaries less
than the saturation values, condensation occurs over
some region in the slab, the wet zone, separated from
the boundaries by two dry zones as illustrated in
Fig. 1.

11t is assumed that the pore size is such that interfacial
curvature has a negligible effect on pressure.
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NOMENCLATURE ’

C vapor concentration

c* saturation vapor concentration

¢ specific heat

D, diffusivity of liquid and vapor,
respectively

D,y mean liquid diffusivity

Fo Fourier number based on liquid
diffusivity, Dy t/I?
Fo, Fourier number based on vapor

diffusivity, D, t/I?
h latent heat of condensation
J liquid flux
J non-dimensional liquid flux,
Jhy/K(T,~T)
K thermal conductivity
Lewis number
location of the warm boundary of the
condensation region
L, location of the cold boundary of the
condensation region
total length of the slab
ratio of vapor diffusivity to liquid
diffusivity
reference temperature, (T, + T))/2
reference temperature, (T, + T,)/2
heat flux per unit area
non-dimensional heat flux,
gL /k(T,—T)
velocity of the condensate
boundary condition variable, equation
(30)
length-scale in condensation region
z length-scale in the slab.

8 o= 4:;&_:..3:..3

=

Greek symbols
] thermal diffusivity
B non-dimensional temperature drop, i
(T,~T)T,
non-dimensional temperature drop,
(T~ T)/T;
hy/(RT)
void fraction of the porous slab
dimensionless temperature
liquid content
critical liquid content
liquid diffusivity
latent heat transport coefficient
density of air
density of condensate
condensation rate per unit volume \
Kossovitch number
Kossovitch number, A, C*/pc, T, !

=

DOFIRPO XA DI M

Subscripts

cold

hot

gas

liquid

steady state

transient

vapor

variable associated with L
variable associated with L,.

D T e I O

Superscripts

N non-dimensionalized variable
parameter evaluated in reference to
the condensation region.

’

The condensation of vapor in the wet zone can be
considered to be simultaneously a vapor sink, liquid
source and heat source. Hence, the three processes of
vapor diffusion, condensate motion and heat transfer
are coupled through the condensation rate. The
location of the condensation region as well as the
vapor concentration, liquid-content and temperature
profiles in the medium are obtained by the
simultaneous solution of the three coupled
conservation equations for vapor, liquid and heat. The
solution to this set of equations with the prescribed
slab boundary conditions is obtained by partitioning
the medium into three regions of dry—wet—dry. The
conservation equations are solved in each region. By
applying continuity of temperature and vapor
concentration together with energy and mass
conservation at the wet-dry boundaries, the
temperature and concentration profiles in the three
regions are matched.

Transport equations
In this study one-dimensional diffusive transfer of

heat, vapor and liquid is considered. According to
Fourier and Fick’s laws, heat and vapor fluxes are
given as:

q= —KdT/dz ()

Jy= —D,dC/dz. (2)
Presently, attention is focused on porous media with
large pores, and thus K and D, are taken to be spatially
uniform and equal to the properties of the gas
occupying the pores.

In unsaturated porous media where surface tension
forces dominate gravitational effects, liquid flux.
neglecting the temperature dependence of surface
tension of the liquid, is [9]:

Jju = p.OD.(0) db/dz 3)

where # denotes liquid content and is defined as the
fraction of the pore space occupied by liquid. D, (6) is a
phenomenologically defined liquid diffusivity whose
dependence on liquid content is a complicated
function of the internal geometry and structure of the
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medium. In general, liquid diffusion may be modelled
to consist of two regimes. At liquid contents less than
the critical liquid content (CLC), liquid is in a
pendular state and does not exhibit any tendency to
diffuse. Beyond the CLC, as the pendular drops
coalesce and the capillary pores are wetted, liquid is
propelled by surface tension forces from regions of
higher liquid content to the drier regions. Although
liquid diffusivity in the second regime is a function of 9,
for mathematical simplicity a mean value of liquid
diffusivity, Dy, is used in the problem formulation.
Thus, liquid diffusivity is modelled separately for each
of the two regimes as:

(1) Immobile condensate
6<0, D (H)=0.1
(2) Mobile condensate
0>06, D (6)=Dy.
Conservation equations and model
In the absence of any convective contributions [9],

the conservation equations for heat, vapor and liquid
may be written as:

da*r oT
— = p, 4
K de +rhfg Pe ot ( )
8*C ocC

Dy——-T=— 5
' 8z2 ot ©)

5] o6 o6
ped > [DL(G) —63] +0=pd— (6)

subject to the boundary conditions:
at z=0 T=T, C=¢(,

at z=L; T=T, C=C,.

In the wet zone the conservation equations are
coupled through the condensation rate term, I,
whereas in the dry zone I' = 0 and 6 = 0. Beyond the
initial  transient (at/L2> 1, D,t/L?» 1), the
temperature and vapor concentration profiles remain
invariant with time, vapor condenses continuously in
the medium, the condensate accumulates with time,
and for liquid contents less that CLC remains
immobile. (In this work any condensation that occurs
during the initial transient is neglected.) Therefore,
equation (6) simplifies to

6_6 T
o p.d

9<0, )

and we define the solution which satisfies the above
conditions as the first spatially-steady regime. During
this regime the temperature and concentration profiles
are at steady state, there is no condensate motion, the

T This condition is more restrictive than is required. A less
conservative condition on liquid diffusivity necessary for
neglecting condensate diffusion is obtained in ref. [9].
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liquid content in the wet zone increases linearly with
time, and the location of the condensation region is
spatially fixed and determined by the continuity of
heat and vapor fluxes at the wet—dry boundaries. After
a time scale of order (6, p.6/T") the local values of 0
reach CLC, and liquid diffusion leads to the migration
of the condensate into the dry regions and the
subsequent expansion of the condensation region.
Fventually, aiter a time period of order [(L2/Dyy)
+(6.p.0/T)] a new steady state is established,
allowing equation (6) to be simplified to

a0 I()
dZ2 B pcéuLM

0> 0. (8)

This regime is defined as the second spatially-steady
regime. Now, the vapor that condenses in the wet zone
diffuses towards the wet zone’s boundaries as liquid
and re-evaporates at these boundaries leaving the
liquid-content profile invariant with time. The heat
and vapor flux conservation conditions at the wet
zone’s boundaries, that determine the location and
boundary temperature of the condensation region,
account for the discontinuities of heat and vapor flux
associated with phase change at those boundaries.

In light of the non-uniform liquid content
distribution in the first regime [see equation (22)], the
analysis of the unsteady regime that separates the two
steady regimes can be only achieved numerically, and
is not undertaken in this study.

SOLUTIONS

As the effects of condensate motion on the
temperature distribution in the slab can be neglected
[9], the second spatially-steady regime lends itself to
similar analytical treatment as the first. Equations (4)
and (5) govern both spatially-steady regimes with the
right-hand terms set to zero. The differences between
the first and second regimes is in the simplification of
equation (6) to either (7) or (8) as well as in the
matching conditions at the wet—dry interfaces. We
begin, therefore, by obtaining a general solution for
the wet zone profiles.

Condensation region profiles

Referring to Fig. 1, we consider a wet zone of some
thickness L, ~ L, boundary temperatures T, and T,
and corresponding boundary concentrations C%(T,)
and CY(T,). The vapor and energy continuity
equations are coupled through the condensation rate
term. By eliminating this term equations (4) and (5) are
reduced, for steady state, to

d*T kD, d*C*
&r _
dx* " k dx?

©)

Condensation occurs throughout the width of the
region and, hence, the vapor concentration is a unique
function of the temperature distribution. Therefore,
equation (9) is a differential equation in terms of



1506

temperature only. The functional dependence of
saturation concentration on temperature is obtained
by invoking the Clausius-Clapeyron relationship. By
approximating the vapor as a perfect gas and
recognizing that v, > v, the Clausius—Clapeyron
equation may be well approximated by

dc* _h,C*
dr T RT?

(10)

Equation (10) is integrated from C¥' corresponding to
the vapor concentration at the mean temperature of
the wet zone, T, = (T, + T1)/2,to C* at T:

C* by T’
Gomr(r)) o
By non-dimensionalizing temperature in the
condensation region as:
0 =(T-THTH-T,) (12)
equation (11) is succinctly written as:
C*/CY = exp(®) (13)
where
_ ,v/ﬁ/r’l
1+ 8y
B (14)

V = ho/(RT)) and § = AT'/T,.

Introducing equations (11) and (13) into the energy
equation, (9), and non-dimensionalizing the length
scale in the condensation region as x = x/(L; — L),
the following second-order non-linear differential
equation for reduced temperature is obtained:

lef d2 t
P Ol

e
vlﬁ!Ql s Sl“yli 2—
+{»~£e—(l+/3n) CXP[(D}}(dSc) =0

where
Le (Lewis number) = a/D,

(15
& (Kossovitch number) = (h, CY'/pc, T)). )

Equation (15) is subject to the following boundary
conditions:

M=172 atxi=0

(16)
W=-12 atx=1
and may be solved numerically. However, an
approximate analytical solution is obtained by
linearizing it around a zeroth-order linear temperature
profile
"= 0.5-x+e(x) (17}
where ¢(x) is a temperature perturbation satisfying
sx=0)=¢(x=1)=0. (18)

Introducing equation (17) into (15) and neglecting
terms of order &2, the following second-order linear

g2 <1,
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differential equation in ¢ is obtained:

d% [ Qv de /-2 pQN\ vIEQ
Ry i DFSoiiii It = 0.
d)’c2< +Le)+d5c< Le )+ Le

(19)
Solving the above in conjunction with boundary

conditions (18) and introducing the result into
equation (17) yields:

_oexp{A'x)—1
'=0.5)1-X——————
1 [ X exp(A)—1 ]

(20)

where
_ 2v12ﬁIQl
T Le+vQ'

The above is an approximate but general solution for
#'(x). It indicates that the temperature profile in the
wet zone is a function of one parameter only, ', which
is the ratio of heat released by condensation to heat
conducted across the wet zone in absence of
condensation and is, therefore, called the latent heat
transport coefficient [9]. The reduced temperature
#'(x) is plotted for various values of A" in Fig. 2. The
accuracy of the perturbation solution is established by
comparing it with the numerical solution of equation
(15) for two A’ values of 2.04 and 4.12 {(corresponding
to temperature drops of 20°C and 40°C, respectively;
see Figs. 3 and 4). The results indicate that as the value
of A’ is increased the analytical solution diverges from
the numerical result due to the increased effect of terms
of order &2 and higher powers. As the range of values
for A’ corresponding to condensation of vapor in
insulated structures does not exceed 6, equation (20) is
a good analytical approximation to the temperature
profile in the condensation region.

The condensation rate per unit volume in non-
dimensional form can be obtained from equations (4)

a1

~0.5 I [ | I
0 0z 04 06 08 1.0

X

FiG. 2. Reduced temperature profile for different valuesof 4'.
The case of no condensation is characterized by 1’ = 0.
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F1G. 3. Comparison of the analytical solution with the
numerical results of the reduced temperature profile,
A =204,

and (20):
Lef’ A% exp(A'x)
Q 2 exp(A)-1

indicating an exponential dependence of I on x, Fig. 5.
Furthermore, the condensation rate exhibits a strong
dependence on the temperature drop across-the zone:
T' ~ X'§’? ~ B3 Thus, a doubling of temperature drop
results in an eight fold increase in the volumetric
condensation rate.

= @1

05 £ +0.1455
y =17.64
0.4f- @ =0.2297
L— Le=1.0
0.3 A=4.2
0.2 05-x+¢
Numerical
e.ir solution
n ol
-0}
-0.2—
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-0.8 ! 1 1 1
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X

FiG. 4. Comparison of the analytical solution with the
numerical results of the reduced temperature profile,
A =412
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FiG. 5. Non-dimensional condensation rate and liquid-
content profile for two different boundary conditions.

FIRST SPATIALLY-STEADY SOLUTION

During the first spatially-steady regime the liquid-
content distribution in the wet zone is obtained by
integration of equation (6):

* L r 112 i’
9(3_‘,F0v)=l:c rLef A'* exp(A'x)

08 Q2 exp(/l’)—I:IF o @)
where Fo, is the Fourier number based on vapor
diffusivity, D,t/(L, —L)%. The liquid-content dis-
tribution increases linearly with time and follows the
same profile as condensation rate. An example is
shown in Fig. 5, except for a change of the label on the
vertical axis T to p.66/C* Fo,.

Matching of zones

The analytical expressions for the temperature and
liquid-content profiles in the condensation region
depend on the width and temperature boundary
conditions of the wet zone. These parameters are not
known a priori and are obtained by matching the
temperature and vapor concentration profiles in the
condensation region with those of the adjacent dry
regions. Once these parameters are identified the
analytical results of the previous section may be
rescaled to reflect their parametric dependence on the
slab’s boundary conditions and width.

In the dry regions, the vapor concentration and
temperature profiles vary linearly with position.
Assuming uniform thermal conductivity and vapor
diffusivity throughout the slab, continuity of heat and
vapor flux across the boundaries of the condensation
region is equivalent to equality of concentration and
temperature gradients at the boundaries:

.- T, aT’

Lo dz ’

z=1L, 23)
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L - dz s < LO (24)
(4]
I, -T, a7’
L-L, & ~h @3)
T
cr-c,  dc*
LoL,- 4 b 26)
T 1

Four unknowns are associated with the four equations
(23)-(26). These are: T, T,, Lo and L,.

Before proceeding with the solution of the four
equations let a new set of non-dimensional variables
and parameters be defined. These are conjugate to the
previously defined variables and are referred to the
slab boundary conditions and width:

_ T-[(L+T)/2]
 T-T,
z=2z/L.

27)
(28)

The new non-dimensional temperature satisfies the
boundary conditions:

n=05
n=-05 atz=1.

atz=0
29

The unprimed conjugates of §’ and Q' are defined in
the Nomenclature.

The values of temperature at the boundaries of the
wet zone 7, and #, are obtained by eliminating the
length scales between the heat and vapor continuity
equations (23)-(26). By invoking the Clausius—
Clapeyron relation and making the simplifying
approximation of (1+#nf8) ~ 1, one equation in the
form of

1 _hh.c exp(uh.c) + uh,c = O (30)
is obtained where
uc=yﬁ( ) )<0
7 1 31)
uy, = B0, —1o) > 0.

A plot of equation (30) is given in Fig. 6. For a given
value of humidity, A, equation (30) has two u roots:
one positive and one negative. The positive root, w,,
corresponds to boundary conditions on the hot side of
the slab and is associated with h, and 5,. The negative
root, u, corresponds to the cold-side boundary
conditions and is associated with h, and n,. When the
cold-side humidity, h_, is put into equation (30), the
negative root and when h; is used the positive root
must be used. Therefore, 1, and #, are now defined,
through equation (30), as a function of the slab
boundary conditions, and the primed parameters
which define the analytical solutions of the wet zone
can be readily calculated.

The two length scales L, and L, are obtained by the
simultaneous solution of any two of the four boundary

S. MOTAKEF and M. A. EL-MasRr1

T TT

ITTTT

~1.0 -05 [¢] 1.0 20 30 4.0

F1G. 6. Plot of boundary condition parameter vs humidity.

equations (23)-(26):

_ 0.5+,
Lo=11 n
° 2/|: (05 ”0> 1 (05 ”O)H " ]

(32)
0.5+,
>/[ (05 no)”’
Mo
<05* )nn] (33)
II, = ! —-————/{/ 1
L _§<expl’—1+ )

- -A(Zeek )
2\exp A’ —1

With the identification of the location of the
condensation region the first spatially-steady regime is
completely defined. The temperature, vapor
concentration, liquid content distributions, as well as
the condensation rate per unit volume and the
location of the condensation region are obtained in
closed form.

The approximate analytical results are compared,
for a representative set of boundary conditions and
medium properties, with the numerical solutions in
Fig. 7. The numerical solution of the energy equation,
is obtained by the spatial discretization of equation
(15) and successive iteration, and the location of the
condensation region is obtained by numerical solution
of equations (23)-(26). The agreement for both the
temperature profile and the location of the
condensation region is very good.

where

(34)

(35)

SECOND SPATIALLY-STEADY REGIME

The second spatially-steady regime is defined as the
regime where the condensate is mobile and the liquid
content in the condensation region has reached a
steady profile. The energy equation for this regime is
identical to that of the first regime, and thus the non-
dimensional temperature profile in the wet zone,
equation (20), and volumetric condensation rate,
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F1G. 7. Comparison of the analytical solution wit

h the numerical results of the non-dimensional

temperature profile in the slab during the first steady regime.

equation (21), of the first steady regime are equally
valid in the second regime. At steady state liquid
continuity for this regime is given by:

d%0 _ Ty(Lo—Ly)?
dx—z a DLM Pc é
and as liquid diffusion is assumed to be zero for 6 < 8,

equation (36) is associated with the following
boundary conditions:

(36)

<

x=0 o7
x=1 0=86,.

Integrating equation (36) and using results of the first
regime for I'(x), the liquid-content distribution is

obtained as:
1/_
5= o

where M is the ratio of vapor diffusivity to liquid
diffusivity. Liquid-content distribution for several
values of the latent heat transport coefficient is given in
Fig. 8, indicating a strong dependence on A'. As the
condensation rate, I, increases with %, Fig. 5, the
liquid-content profiles vary steeply at the colder edge
of the condensation region and therefore, the point of
maximum liquid content, lies closer to the colder
boundary.

During this regime the liquid efflux into the
boundaries of the wet zone is equal to condensation
rate per unit area of the wet zone. Liquid effluxes at
X=0 and x=1, J, and J,, respectively, are
proportional to the gradient of liquid content at those
locations, and are calculated to be:

Lef exp(A' —~1)—X'

C! Lep ri-1
00 = 6.+M i s

- expA’' —1

e

Jo= Q  2expi —1) (39)
= Lef (X —1)expi'+1
Ji= Q  2expl—1) “40)

Comparison of the above two equations indicates that
J, increases much more rapidly than J, with
increasing A'.

Matching of zones

As in the first steady regime, the vapor
concentration and temperature distributions in the
dry regions are linear. The continuity of heat flux and
mass conservation at the two wet-dry interfaces result
in four equations which are solved to generate the
values of the four unknowns T, T;, L, and L,.

The heat supplied from the warmer side of the slab

Ns=5.0

Fic. 8. Normalized steady state liquid-content profiles

during the second steady regime.
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to the condensation region is equal to the heat flux
conducted into the wet zone plus the heat flux required
to evaporate the liquid flux J,
,-T, a7’

—k—L;— = —k?g-f'.]ohfg, zZ= LO-
On the other hand, the vapor flux entering the wet
zone at z = L is equal to the sum of the vapor flux
entering the slab at z = 0 plus the vapor flux generated
by the evaporation of the liquid flux J,.

(41)

G.—C3

-b. L,  dz

(42)

By similar arguments the following heat and vapor-
flux balances at the z = L, boundary of the wet zone
are obtained:

T,-T, dr’
—kt e =—k—, z=L, 43
kLT_Ll‘f‘thrg dz ’ Z 1 (43)
and
C¥—C, dc*
= -D,—+J =L,. 44
VLT—LI Dv dZ + 13 z 1 ( )

Under steady-state conditions, the condensed vapor
migrates towards the boundaries of the condensation
region and evaporates. Hence, as there is no net
accumulation of condensate, the vapor flux entering
the slab equals the vapor flux leaving it:

ct-C
1 c_D

C.—C%
"L—L, ‘

b v
LO

(45)

By the same token, with no net mass change in the
porous slab, there is no associated change in the
internal energy of the wet zone. Therefore, the heat
flux entering the slab is equal to the heat flux
leaving it:

L-T, _, L-T.

k .
L, Li-L,

(46)

By substituting equations (39) and (40) for liquid
fluxes J, and J,, equations (41) and (43) are
reduced to:

M =Moo M1~

— = = 1.

’ 47
L, 1-I, @)

The above indicates that the heat flux into and out of
the wet zone is equal to the heat flux through the slab
with no condensation present (y,—n. = 1). The
invariance of heat flux across the slab to condensation
of vapor is due to the evaporation of the condensate at
the wet zone boundaries which counterbalances the
effects of heat released by condensation in the wet
zone.

Two equations relating the temperatures at the wet
zone boundaries, #, and #,, are obtained by
eliminating the length scales between equations (41)
and (42), and (43) and (44), using the Clausius-
Clapeyron relation, and the wet zone temperature

S. MoTAKEF and M. A. EL-MASRI

distribution of equation (20):
hy, exp(®y) —exp(Py)
M —"No

A"
= 0.5vﬂ[<1 +m>(l +1oB) " 2 exp(®,)

_Le { A (48)
Qv expA' —1

and
h. exp(®,) —exp(®,)
r’c - '71

Aexp A
= O.SVB[(I +aﬁ%‘p—~>(1 +1,8) "% exp(®,)

—1

Le Aexpd

Qv (1 exp A — 1):] “9)
In equation (48) n, and in equation (49) 5, appear
implicitly in A’ and their values are obtained by the
simultaneous solution of the two equations by
successive iteration. In Fig. 9 the dependence of 5, and
7, on the humidity boundary conditions at a fixed set
of boundary temperatures is investigated. With the
slab boundaries at 1009 relative humidity,
condensation occurs throughout the region and the
temperature at the wet zone boundaries approach the
slab boundary values (7, — 0.5,n, = —0.5). At lower
humidity values, as the size of the wet zone gets
smaller, the temperature drop across it is reduced.

The length scales of the second spatially-steady

regime are obtained by the simultaneous solution of
the two heat balance equations, equations (41)
and (43):

_ AT’
L0=(”h“’70)/|:'ﬁ+1_('10_'71)jl (50)

and
_[aT AT
Ll=L—T—,+(nh—no)]/[ﬁ+1—(no—m)J- (51)

0.4

0.2}

-0.4 ~L__ il
t ¢ J
0.4 0.5 0.6 0.7 0.8 0.9 1.0

fn

FiG. 9. Non-dimensional temperature at the boundaries of
the wet zone vs the hot-side humidity.
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F1G. 10. Non-dimensional temperature profile in the slab
during the second steady regime.

With the solution of the length scales, the second
spatially-steady regime is now completely defined.

As an illustrative example the second spatially-
steady regime for the parameters of Fig. 7 is
investigated. The temperature profile as well as the
location of the wet zone for this case is shown in
Fig. 10.

SUMMARY

The temporal evolution of condensation in a porous
slab consists of three regimes. During the first regime,
where the condensate is immobile, the vapor
concentration, temperature and location of the
condensation region are spatially steady and the
condensate is accumulated linearly with time.
Assuming a negligible variation of thermal
conductivity of the slab with increased liquid content,
the energy released by the condensation of vapor
reduces the magnitude of heat flux entering the slab,
gy, Fig. 11. As the local values of liquid content
increase above CLC and the condensate becomes
mobile, the concentration and temperature profiles
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FiG. 11. Non-dimensional heat flux at the boundaries of the
slab during the two regimes vs the hot-side humidity.
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F1G. 12. Location of the condensation region during the two
regimes vs the hot-side humidity.

undergo a transient change, and the condensation
region expands to accommodate the motion of
condensate towards its boundaries, Fig. 12. This
transition period is followed by the second spatially-
steady regime during which the temperature, vapor
concentration and liquid-content profiles are time-
invariant. During this regime the effect of heat released
by condensation is negated with the absorption of
energy by the evaporation of the condensate effluxes at
the wet zone boundaries and therefore, the values of
heat flux into and out of the slab are equal to the values
for the case of no condensation, Fig. 11.
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TRANSFERTS SIMULTANES DE CHALEUR ET DE MASSE AVEC CHANGEMENT DE
PHASE DANS UNE COUCHE POREUSE

Résumé—On étudie analytiquement les transferts simultanés de chaleur et de masse avec changement de

phase dans une couche poreuse. Deux régimes spatialement stables, correspondant au condensat immobile

et mobile, sont découverts. On obtient des expressions analytiques pour la température, la concentration

de vapeur, le flux de condensat, la distribution de teneur en humidité, aussi bien que la location de la région
de condensation pour chacun des deux régimes.

GLEICHZEITIGER WARME- UND STOFFTRANSPORT MIT PHASEN-WECHSEL IN
EINER POROSEN PLATTE

Zusammenfassung—Der gleichzeitige Warme- und Stofftransport mit Phasendnderung in einer pordsen

Platte wurde analytisch untersucht. Es wurden zwei rdumlich unverdnderliche Bereiche, die unbeweglichem

und beweglichem Kondensat entsprechen, entdeckt. Analytische Ausdriicke geschlossener Form wurden

fiir die Verteilung von Temperatur, Dampfkonzentration, Kondensationsrate und Fliissigkeitsanteil und
die Lage des Kondensationsgebiets in den beiden Bereichen ermittelt.

B3AMMOCBS3AHHBIN TEIJIO-U MACCOITEPEHOC IPU ®A30BOM I1EPEXO/IE B
MOPUCTOMN TJTIACTUHE

AmnoTaius—BLIIOMHEHO aHANHTHYECKOE MCC/ACJOBAHHE B3aHMOCBA3AHHOIO TEIUIO-H MAacCOTEpeHoca

npu $a30BOM NpeBpalleHHH B nopucToif wiacTuHe. OGHAPYXEHO IBa MPOCTPAHCTBEHHO YCTOMYHBBHIX

peXkuMa, KOTOPHIE COOTBETCTBYIOT HEMOIBMXHOMY M MOABHXHOMY COCTOSHHAM KoHaeHcaTa. [Tomyuens

aHaNNTHYeCKHE BHIPAaXEHHA B 3aMKHYTOM BHAE IJs ONpelc/eHHs MojeH TeMNepaTypbl, KOHUICHTPALMH

napa, CKOPOCTH KOHACHCALMHE M BJIaTOCOACPXKAHHA, 4 TAKKE MECTOMNOJIOKEHHS 00NACTH KOHICHCAIHH
LTS KaXIOro U3 PeXXHMOB.



